Trainable fusion rules. II. Small sample-size effects
نویسنده
چکیده
Profound theoretical analysis is performed of small-sample properties of trainable fusion rules to determine in which situations neural network ensembles can improve or degrade classification results. We consider small sample effects, specific only to multiple classifiers system design in the two-category case of two important fusion rules: (1) linear weighted average (weighted voting), realized either by the standard Fisher classifier or by the single-layer perceptron, and (2) the non-linear Behavior-Knowledge-Space method. The small sample effects include: (i) training bias, i.e. learning sample size influence on generalization error of the base experts or of the fusion rule, (ii) optimistic biased outputs of the experts (self-boasting effect) and (iii) sample size impact on determining optimal complexity of the fusion rule. Correction terms developed to reduce the self-boasting effect are studied. It is shown that small learning sets increase classification error of the expert classifiers and damage correlation structure between their outputs. If the sizes of learning sets used to develop the expert classifiers are too small, non-trainable fusion rules can outperform more sophisticated trainable ones. A practical technique to fight sample size problems is a noise injection technique. The noise injection reduces the fusion rule's complexity and diminishes the expert's boasting bias.
منابع مشابه
Trainable fusion rules. I. Large sample size case
A wide selection of standard statistical pattern classification algorithms can be applied as trainable fusion rules while designing neural network ensembles. A focus of the present two-part paper is finite sample effects: the complexity of base classifiers and fusion rules; the type of outputs provided by experts to the fusion rule; non-linearity of the fusion rule; degradation of experts and t...
متن کاملExperts' Boasting in Trainable Fusion Rules
We consider the trainable fusion rule design problem when the expert classifiers provide crisp outputs and the behavior space knowledge method is used to fuse local experts’ decisions. If the training set is utilized to design both the experts and the fusion rule, the experts’ outputs become too self-assured. In small sample situations, “optimistically biased” experts’ outputs bluffs the fusion...
متن کاملEER of Fixed and Trainable Fusion Classifiers: A Theoretical Study with Application to Biometric Authentication Tasks
Biometric authentication is a process of verifying an identity claim using a person’s behavioural and physiological characteristics. Due to the vulnerability of the system to environmental noise and variation caused by the user, fusion of several biometric-enabled systems is identified as a promising solution. In the literature, various fixed rules (e.g. min, max, median, mean) and trainable cl...
متن کاملOn Deriving the Second-Stage Training Set for Trainable Combiners
Unlike fixed combining rules, the trainable combiner is applicable to ensembles of diverse base classifier architectures with incomparable outputs. The trainable combiner, however, requires the additional step of deriving a second-stage training dataset from the base classifier outputs. Although several strategies have been devised, it is thus far unclear which is superior for a given situation...
متن کاملA discussion of an issue relating to sample sizes of exact phase II trial designs
A’Hern’s and Jung’s single stage designs are phase II trial designs based on dichotomous outcomes. They are used in the single arm and randomised settings respectively. Decision rules at the end of the study are based on a required number of either treatment successes or extra successes on the treatment arm. They are exact designs in that the power and alpha can be calculated directly using bin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 19 10 شماره
صفحات -
تاریخ انتشار 2006